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Abstract. Consequences of parametric resonances on neutrino resonant spin–flavor precession (RSFP)
arising from global magnetohydrodynamic waves in the Sun are investigated. We show that for typical
magnetic field profiles which generate an RSFP solution to the solar neutrino anomaly, the effects of the
parametric resonance can be found for neutrinos of which the energy is of order 0.1 to 1 MeV. This opens
the possibility of investigating these effects using real time experiments, like Borexino or Hellaz.

1 Introduction

Nuclear reactions existing in the central part of the Sun
produce left-handed electron neutrinos [1–4], which travel
through a possibly large magnetic field before leaving the
solar interior. Assuming a non-vanishing neutrino mag-
netic moment [5], neutrinos interacting with this field can
be resonantly converted into sterile non-electron neutri-
nos or active non-electron antineutrinos, depending on
them being Dirac or Majorana type, respectively. On the
other extremity of the neutrino trajectory to the Earth,
solar neutrino detectors [6–10] are mainly sensitive to left-
handed electron neutrinos. Therefore, the measured flux
of solar neutrinos after this possible interaction with the
solar magnetic field is smaller than what is expected from
the standard solar model calculation [1–4], which predicts
no conversion of the original left-handed neutrinos. This
mechanism, which is called resonant spin–flavor preces-
sion (RSFP), may be responsible for the experimentally
observed solar neutrino deficit [6–10].

In recent analyses [11,12] it was argued that solar neu-
trino observations have to be sensitive to the effects of
magnetohydrodynamic (MHD) fluctuations in the Sun if
the resonant spin–flavor precession (RSFP) mechanism is
the solution to the solar neutrino problem. This can be
easily understood. The solar neutrino survival probability
based on the RSFP mechanism crucially depends on the
values of four independent quantities. Two of these are re-
lated to the neutrino properties: its magnetic moment µν

and the squared mass difference of the physical eigenstates
involved in the conversion mechanism divided by their en-
ergy, ∆m/E. The other two quantities are related to the
physical environment in which neutrinos are inserted: the
magnetic field profile B(r) and the electron (and neutron,
for Majorana neutrinos) number density distribution N(r)

along the neutrino trajectory. MHD affects the magnetic
field profile as well as the matter density, and therefore its
effects will strongly influence the RSFP neutrino survival
probability. Indeed we believe that such consequences can
be thought of as a test to this solution to the solar neutrino
problem based on the RSFP mechanism [11,12].

We have recently considered the influence of the con-
tinuous region of the MHD spectrum on the neutrino
RSFP phenomenon. This part of the spectrum introduces
very localized fluctuations on the magnetic field [11] as
well as in the matter density profile [12]. In the present
paper we analyze the complementary portion of the MHD
spectrum, i.e., the out-of-continuum spectrum, which gen-
erates global waves. These global waves extend over a
large region of the neutrino trajectory inside the Sun and
generate both magnetic and matter density fluctuations.
They also are associated with a typical perturbation wave-
length, LMHD which has to be compared with the neutrino
oscillation length Lm. In case that LMHD << Lm, the
neutrino evolution is governed by the average magnetic
field and matter density and the MHD fluctuations are
unimportant. If LMHD >> Lm, the transition is adiabatic
and the neutrino evolves following the magnetic and den-
sity change. Nevertheless, a very interesting process occurs
when LMHD is of the same order as Lm. In this case the in-
fluence of the fluctuations on neutrino conversion becomes
appreciable. In the extreme case where LMHD = Lm, a
parametric resonance [13] occurs maximizing the effect of
the MHD fluctuations. We argue that the appearance of
such a parametric resonance is quite likely in the Sun due
to MHD fluctuations.

We found perturbations in the matter density and in
the magnetic field which fluctuate with a period of the or-
der of a few days, and with a fluctuation scale of LMHD ≈
10−3–10−2×R�, where R� is the solar radius. These are of
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the order of magnitude of the oscillation length of neutri-
nos under the RSFP mechanism, with suitable parameters
to solve the solar neutrino anomaly.

We analyzed the fluctuation in the probability gener-
ated by these perturbations and found that for large re-
gions of the solar neutrino spectrum this fluctuation can
typically reach 10% of the sign due to parametric reso-
nance, and could achieve 50% for specific values of the
neutrino energy for some field configurations. This could
be detected by appropriate real time detectors.

2 MHD modes and neutrino spin–flavor
conversion

If we consider a non-vanishing neutrino magnetic moment,
the interaction of such neutrinos with this magnetic field
will generate neutrino spin–flavor conversion which is
given by the evolution equations [5]

i
d
dr

(
νR

νL

)
=

(
−

√
2

2 GFNeff.(r) + ∆m
4E µν |B⊥(r)|

µν |B⊥(r)|
√

2
2 GFNeff.(r) − ∆m

4E

)

×
(

νR

νL

)
, (1)

where νL (νR) is the left- (right-) handed component of the
neutrino field, ∆m is the squared mass difference of the
corresponding physical fields, E is the neutrino energy, GF
is the Fermi constant, µν is the neutrino magnetic moment
and |B⊥(r)| is the transverse component of the perturbed
magnetic field. Finally, we have Neff. = Ne(r) − Nn(r) for
Majorana neutrinos, where Ne(r) (Nn(r)) is the electron
(neutron) number density distribution, in which case the
final right-handed states νR are active non-electron an-
tineutrinos. For Dirac neutrinos, Neff. = Ne(r)
−(1/2)Nn(r); in this case the right-handed final states
are sterile non-electron neutrinos [5]. In this paper we
will assume Majorana neutrinos. Note, however, that since
Nn ∼ (1/6)Ne in all points inside the Sun, the difference
of taking Dirac or Majorana neutrinos leads to a multi-
plicative factor of ∼ 10/11, and does not lead to sensible
alterations in our conclusions, which are, in this way, valid
for Majorana or Dirac neutrinos.

MHD waves and instabilities generated by MHD the-
ory [14] can alter the neutrino evolution since they can in-
duce time fluctuations of the transverse component of the
magnetic field |B⊥(r)| as well as the matter density Ne(r)
appearing in (1). Such magnetic fluctuations are obtained
assuming that they are generated by small displacements
of the solar plasma ξ described by the linearized MHD
equations [15].

We consider a cylinder involving the solar equatorial
plane in such a way that the plane of the solar equator
coincides with one of the planes of this cylinder perpen-
dicular to the z axis, and we take the cylinder height ap-
proximately 0.01 to 0.1 R� (where R� ≈ 6.96 × 1010 cm

is the solar radius). We also assume periodicity in the co-
ordinate z which means that the matter density, pressure
and magnetic field are considered equal towards the North
and South directions from the solar equator plane, which
is a good approximation if we are close to the equatorial
plane. This leads to the conclusion that one should only
solve the differential equation [16]
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where g is the acceleration due to gravity, p is the pres-
sure, γ = Cp/Cv is the ratio of the specific heats, ρ0 is the
equilibrium matter density profile and B0 is the magnetic
equilibrium profile in the Sun. Note that in the deriva-
tion of the above equations we considered the equilibrium
magnetic profile B0 in the z direction.

The Hain–Lüst equation shows singularities when
f(r) = 0, that is, when w2 = w2

A or w2 = w2
S , which

regions in the w2 parameter space are called Alfvén and
slow continua, respectively. In the interval 0 ≤ r ≤ 1 the
functions w2

A and w2
S take continuous values that define

the ranges of the values of w2 that correspond to improper
eigenvalues. Eigenvalues of the Hain–Lüst equation must
be searched, therefore, outside the regions where w2 = w2

A
and w2 = w2

S , and they define the global modes which
are associated with magnetic and density waves along the
whole radius of the Sun.

3 Resolution of the Hain–Lüst
and evolution equations

We calculated the MHD magnetic spectrum and its conse-
quences for the solar neutrino propagation assuming cer-
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tain values for the profiles of the solar matter density, the
pressure, the magnetic field and for the magnetic moment.

3.1 Solar matter density distribution and pressure
profile

For the solar matter density distribution ρ0, and for the
pressure p, we considered the standard solar model pre-
diction, i.e., approximately monotonically decreasing ex-
ponential functions in the radial direction from the center
to the surface of the Sun [1]. The density profile was used
to calculate the acceleration of gravity.

As the density profile found in [1] is given just up to
r = 0.95 we have performed our calculations just up to
this value of r. The conditions that we imposed on ξ are
over all calculated values of r: 0 < r < 0.95.

3.2 Magnetic field profile

The global modes obtained with the magnetic fields used
in the analysis of the effect of localized waves [11,12] are
very similar to each other. So, we present the effect of
these modes on the neutrino RSFP phenomenon for just
one of these magnetic fields; one that we consider a good
representative of the others:

B0 = B0(r) =


1 × 106

(
0.2

r+0.2

)2
G for 0 < r ≤ rconvec,

BC(r) for r > rconvec,

(9)
where BC is the magnetic field in the convective zone given
by the following profiles:

BI
C(r) = 4.88× 104

[
1 −

(
r − 0.7

0.3

)n]
G for r > rconvec,

(10)
with n = 6 and rconvec = 0.7. This profile was used by
Akhmedov, Lanza and Petcov [17] to show the consistence
of the solar neutrino data with the RSFP phenomenon.

In order to illustrate the effect of the parametric reso-
nance, we used other magnetic fields that have been used
by different authors to solve the solar neutrino problem
through the RSFP mechanism [18]:

BII
C (r) =




Binitial + [Bmax−Binitial
rmax−rconvec

](r − rconvec)
for rconvec < r < rmax,

Bmax + [Bmax−Bfinal
rmax−1.0 ](r − rmax)

for r > rmax,

(11)

where Binitial = 2.75×105 G, Bmax = 1.18×106 G, Bfinal =
100 G, rconvec = 0.65 and rmax = 0.8. Although the mag-
netic field in this configuration seems to be too strong
to be present in the convective layer of the Sun, we ex-
tend our analysis for this configuration because it is very
useful to illustrate the parametric resonance effect for dif-
ferent values of the perturbation oscillation length. It is

also important to notice that the important quantity for
the neutrino evolution is not the magnetic field itself, but
the product µν |B⊥(r)|, which we pose to be of the same
magnitude in the Sun convective layer for all magnetic
field configuration chosen here, as we discuss in Sect. 3.5.

We considered also a third field, constant all over r,
given by [19]

B0 = 253 kG for 0 < r < 1.0. (12)

We assume that the magnetic equilibrium profile B0 is in
the z direction.

3.3 Constraints on ρ1 and b1

To impose physical conditions on the solutions found for
the Hain–Lüst equation, we calculated the perturbation of
the density and of the magnetic field provoked by ξ, given
by the equations

b1 = ∇ × (ξ × B0) (13)

and
ρ1 = ∇ · (ρξ). (14)

The matter density fluctuations are very constrained by
helioseismology observations. The largest density fluctua-
tions ρ1 inside the Sun are induced by temperature fluc-
tuations δT due to convection of matter between layers
with different local temperatures. An estimate of such an
effect is presented in [20] and gives

ρ1

ρ0
= mpg(r − r0)

δT

T 2 =
r − r0

R0

δT

T
, (15)

where mp is the nucleon mass, g(r) is the acceleration
of gravity and R0 ≈ 0.09 × R� (R� is the solar radius)
is a numerical factor coming from the approximately ex-
ponentially decreasing standard matter density distribu-
tion inside the Sun [1]. Since (〈δT 2〉)1/2/T ≈ 0.05 is not
in conflict with helioseismology observations [21], taking
(r − r0)/R0 ≈ 1, we assume density fluctuations ρ1/ρ0
smaller than 10%. In fact, in an accurate analysis of the
consequences of helioseismology for matter density fluc-
tuations [22] it was concluded that ρ1/ρ0 can be very
large (larger than 10%) only for the very inner parts of
the Sun (r < 0.04) as well as for very superficial regions
(r > 0.98). For 0.04 < r < 0.25, ρ1/ρ0 decreases ap-
proximately linearly and achieves its smaller value, 2%,
in r ≈ 0.25. Finally, in the region where 0.4 < r < 0.9,
ρ1/ρ0 is approximately 5%. We impose these constraints
as boundary conditions for the amplitudes of the density
fluctuations we will consider later.

The size of the amplitude factor b1 is not very con-
strained by the solar hydrostatic equilibrium, since the
magnetic pressure B2

0/8π is negligibly small when com-
pared with the dominant gas pressure if we consider the
matter density distribution ρ0 as predicted by the stan-
dard solar model and the magnetic field strength of order
of the ones required to solve the solar neutrino anomaly
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Fig. 1. Profile of a ξr, after normaliza-
tion, b ρ1/ρ0 and c b1/B0; these are
caused by the magnetohydrodynamic
effect for the magnetic profiles given by
(9) and (10) (B0 n = 6), (12) (B0 con-
stant) and (9) and (11) (B0 triangular)

[17]. Despite this fact, it cannot be arbitrarily large when
we are solving the Hain–Lüst equation. This equation is
obtained after linearization of the magnetohydrodynamics
equations, which brings about the fact that the solution ξ
must be very small, |ξ| << 1, so that the non-linear terms
can be neglected. This implies that |b1|/|B0| < 1. The er-
ror associated with this approximation is σ ≈ (|b1|/|B0|)2.
The maximum possible value for the ratio |b1|/|B0| is re-
lated to a clear statistical distinction between the maxi-
mum and the minimum value of the perturbed magnetic
field, which is given approximately by (|b1|/|B0|)/σ (in
units of σ). To have a minimum 2σ distinction between
the maximum and minimum magnetic field, we choose the
maximum value of the perturbation such that |b1|/|B0| ≈
0.5.

The kind of conditions that we impose on the per-
turbation ξ due to the restrictions on ρ1/ρ0 and b1/B0
determine the amplitude of ξ but do not exclude one solu-
tion ξ in favor of another ξ. In this way, our calculations
do not determine the set of possible frequencies out of the
continua, but determine the kind of oscillations related to
these perturbations, and the range of possible periods of
the oscillations.

3.4 Range of frequencies

In this work we were interested in calculating the eigen-
functions of the Hain–Lüst equation via the continua de-
termined by the functions w2 = w2

A and w2 = w2
S . In the

present case, we have for these functions w2
A ≈ w2

S , due
to the fact that the magnetic pressure is negligibly small
when compared to the gas pressure (B2

0 << γp). As wA

and wS depend linearly on B, the magnetic profiles used
were such that there is no value of r for which B is zero,

because, if wA = 0 or wS = 0, this means that the con-
tinua extend until w = 0 and in this way all the oscillatory
modes below the continua would be killed. Otherwise, it is
very reasonable that the magnetic field is non-zero inside
the Sun if we choose magnetic profiles which value in the
convective zone is ∼ 105 G.

For the magnetic profiles given by (9) and (10) we
have possible solutions for w > 4.40 × 10−5 s−1 or w <
5.98 × 10−6, which gives a period of τ < 1.65 days or τ >
12.14 days, respectively. For the magnetic profile given
by (9) and (11) we have w > 4.95 × 10−4 s−1 or w <
5.32 × 10−6 s−1, which gives τ < 0.15 days or τ > 13.7
days, respectively. For the magnetic profile given by (12)
we have w > 6.28×10−4 s−1 or w < 2.56×10−6 s−1, which
gives τ < 0.11 days or τ > 28.5 days, respectively.

3.5 Magnetic moment

We are considering the standard solar electron number dis-
tribution which implies that 10−16 eV ≤ (21/2/2)GFNe(r)
≤ 10−12 eV. In order to find an appreciable spin–flavor
neutrino conversion governed by the equations of motion
(1), we have to allow the other two relevant quantities
in these equations, namely ∆m/4E and µν |B⊥(r)|, to be
approximately of the same order of (21/2/2)GFNe(r). As-
suming the magnetic fields given by (9) and (10), if we
take µν ≈ 10−11µB (µB is the Bohr magneton), the quan-
tity µν |B⊥(r)| varies from approximately 10−14 eV in the
central parts of the Sun to 10−15 eV in the beginning of
the convective zone and smaller values than 10−16 eV in
the solar surface, giving the order of magnitude needed
for appreciable conversion. For the magnetic field given
by (11) and (12) we used µν = 2 × 10−12µB, which gives



N. Reggiani et al.: Solar magnetohydrodynamic modes and parametric resonance 267

-16.0 -15.0 -14.0 -13.0 -12.0
log(∆m/4E)

0.00

0.20

0.40

0.60

0.00

0.05

0.10

0.15

0.00

0.02

0.04

0.06

0.08

0.10

B0 n=6

B0 constant

B0 triangular

∆P

∆P

∆P

Fig. 2. Amplitude ∆P of the survival probability as a function
of ∆m/4E for the magnetic profiles given by (9) and (10) (B0

n = 6), (12) (B0 constant) and (9) and (11) (B0 triangular)

µν |B⊥(r)| to be of the same order of (21/2/2)GFNe(r) in
the convective zone.

4 Results

In the first row of Fig. 1 we present the profile of the ra-
dial displacement ξr, calculated by solving the Hain–Lüst
equation (2), when the magnetic profiles are assumed to
be given by (9), (10), (11) and (12), respectively, are as-
sumed. It is important to notice that clearly different ξr

wavelengths appear for each one of the magnetic fields em-
ployed. This will be reflected also in the MHD fluctuations
of the matter density ρ1/ρ0 and the magnetic field b1/B0,
which are directly calculated from ξr and are shown in the
second and third rows of Fig. 1, respectively.

The Hain–Lüst solutions shown in Fig. 1 are found in
the region of the MHD spectrum in which frequencies are
smaller than the continuum frequencies: ω2 < ω2

A ≈ ωS .
The period of the solutions found above the continua are
smaller than O(1 s), very tiny, therefore, to be detected by
present experiments.

In Fig. 2 we present the effects on the solar neutrino
survival probability when the perturbations ρ1 and b1 are
included in the evolution equations (1). In this figure we
plot the difference of the survival probability calculated
in two different situations: when the effect of the MHD
perturbations maximally increases the survival probabil-
ity and the opposite case when the perturbations destruc-
tively contribute to this probability, decreasing it.
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Fig. 3. The same survival probability difference as shown in
Fig. 2, when a constant magnetic field is assumed, but varying
the ratio between the perturbation wavelength and the neu-
trino oscillation length

We see that the range of the values of ∆m/4E for
which this difference is significant varies for each of the
magnetic field profile considered. This is a direct conse-
quence of the appearance of a parametric resonance [13]
in the evolution of the neutrino due to the MHD per-
turbations along its trajectory. To understand this effect
we have to consider the neutrino oscillation length. When
we have a neutrino oscillation length similar to the wave-
length of the magnetohydrodynamic perturbations, a sig-
nificant enhancement of the neutrino chirality conversion
occurs. This is the parametric resonance which is clearly
observed in the neutrino survival probability. In other
words, when the neutrino is evolving, an intense chiral-
ity conversion from left- to right-handed neutrinos occurs
when the magnetic field is increased by the perturba-
tion. On the contrary, when the neutrino oscillation would
lead to the opposite chirality conversion from right to left
neutrino, this coincides with a period of lower magnetic
field, and this conversion is suppressed. If the perturba-
tion wavelength is very different from the neutrino oscil-
lation length, then this effect will not be relevant and we
can understand the behavior of Fig. 2 far from the peaks.
Figure 3 illustrates this effect. Here we plot the same sur-
vival probability difference as presented in Fig. 2, when
a constant magnetic field is assumed, but varying the ra-
tio between the perturbation wavelength and the neutrino
oscillation length.

If we compare the different MHD perturbations of
Fig. 1 generated by the different magnetic field config-
urations, we see that they differ substantially in their typ-
ical wavelengths. We can associate the smaller wavelength
(case (10)) with a parametric resonance in the lowest en-
ergy range of the neutrino, and the greatest oscillation
length (case (11)) with the higher energy range. To present
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a more quantitative example, we can calculate the pertur-
bation wavelength when using a particular magnetic field
configuration. Let us consider the case (11) and compare
with a typical corresponding neutrino oscillation length
where the effect on the survival probability is significant.
For this magnetic field configuration, we have an approx-
imate perturbation wavelength of 7 × 10−3R�, or equiv-
alently, 2 × 1013 eV−1. The range of a significant effect in
the probability yields a neutrino oscillation length that
lies in the range ∼ 2–6 × 1013 eV. This makes evident the
importance of the parametric resonance for the survival
probability.

A final remark is in order. If we assume that the RSFP
mechanism is the reason of the experimentally observed
solar neutrino deficit, a typical magnitude of the parame-
ter ∆m is O(10−7–10−8) eV2 [18]. Putting these numbers
in the results shown in Fig. 2, we conclude that low energy
neutrinos (0.1–1 MeV) will be more sensitive to paramet-
ric resonances. In this case, the kind of perturbations an-
alyzed here could be tested by real time experiments that
have a high efficiency for low energy neutrinos. This is the
case for experiments like BOREXINO [23] and HELLAZ
[24]. These should be able to look for variations of the de-
tection rate for low energy neutrinos with periods of the
order of some days, given the strong evidence for the inter-
action of the solar neutrinos with instabilities generated
by the magnetohydrodynamics in the Sun.

Since MHD waves generate perturbations also on the
matter density in the Sun, other neutrino conversion mech-
anisms that are sensitive to the matter density could be
sensitive to the parametric effects analyzed in this paper.
This is the case, for instance, for the MSW mechanism
[25] and the neutrino conversion induced by flavor chang-
ing (FC) interactions [26]. In fact, parametric effects were
explicitly analyzed in [27] and [28] in a phenomenological
context. In these papers the authors concluded that the
parametric effect in the MSW mechanism would be en-
hanced if the density fluctuations take place in the inner
part of the Sun, near the resonances for adiabatic tran-
sitions. Since our perturbations are located in the con-
vective zone, the parametric effects due to density fluc-
tuations would not be very strong in the MSW context.
Also, the fluctuations induced by MHD effects shown in
Fig. 1 show very constrained matter density amplitudes.
These are less than 1% except very close to the solar sur-
face (r/RSun ≈ 1), where they achieve a maximum value
of less than 2%. In fact, we obtain small parametric ef-
fects (∆P . 10−4) due to the density perturbations in
other neutrino conversion scenarios for the MHD waves
obtained in this paper.

Time fluctuations are expected in several conversion
mechanisms invoked in the solar neutrino context. The
vacuum oscillation phenomenon [29,30] leads to seasonal
fluctuations of the solar neutrino (beyond the standard
geometrical factor) of which the period is one year. Day–
night effects and the related seasonal variations are ex-
pected in the MSW [31] as well as in the FC scenario.
Resonant spin–flavor precession generates a modulation
of the neutrino flux due to the solar activity (period of

eleven years) as well as some fluctuation of the neutrino
flux when the Earth crosses the solar equator (period of
half a year). Therefore, we believe that any periodic time
fluctuation of the solar neutrino measurements of which
the period does not coincide with the above mentioned
ones can be taken as an indication of MHD modes in the
sun. This would be evidence in favor of the resonant spin–
flavor precession solution to the solar neutrino anomaly.

We conclude that maybe another effect has to be taken
into account when we discuss possible solutions to the so-
lar neutrino problem. In addition to the adiabatic param-
eter and the usual resonance effects, the interference be-
tween the oscillation length of the solar neutrinos and the
solar perturbation wavelengths induced by MHD effects
may lead to parametric resonances, playing an important
role in the survival probability of solar neutrinos in the
resonant spin–flavor precession scenario.
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